• ColeSloth@discuss.tchncs.de
    link
    fedilink
    English
    arrow-up
    0
    ·
    6 months ago

    I’d just say that not all fractions can be broken down into a proper decimal for a whole number, just like pie never actually ends. We just stop and say it’s close enough to not be important. Need to know about a circle on your whiteboard? 3.14 is accurate enough. Need the entire observable universe measured to within a single atoms worth of accuracy? It only takes 39 digits after the 3.

    • sp3ctr4l@lemmy.zip
      link
      fedilink
      English
      arrow-up
      0
      ·
      6 months ago

      There are a lot of concepts in mathematics which do not have good real world analogues.

      i, the _imaginary number_for figuring out roots, as one example.

      I am fairly certain you cannot actually do the mathematics to predict or approximate the size of an atom or subatomic particle without using complex algebra involving i.

      It’s been a while since I watched the entire series Leonard Susskind has up on youtube explaining the basics of the actual math for quantum mechanics, but yeah I am fairly sure it involves complex numbers.

      • myslsl@lemmy.world
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        6 months ago

        i has nice real world analogues in the form of rotations by pi/2 about the origin (though this depends a little bit on what you mean by “real world analogue”).

        Since i=exp(ipi/2), if you take any complex number z and write it in polar form z=rexp(it), then multiplication by i yields a rotation of z by pi/2 about the origin because zi=rexp(it)exp(ipi/2)=rexp(i(t+pi/2)) by using rules of exponents for complex numbers.

        More generally since any pair of complex numbers z, w can be written in polar form z=rexp(it), w=uexp(iv) we have wz=(ru)exp(i(t+v)). This shows multiplication of a complex number z by any other complex number w can be thought of in terms of rotating z by the angle that w makes with the x axis (i.e. the angle v) and then scaling the resulting number by the magnitude of w (i.e. the number u)

        Alternatively you can get similar conclusions by Demoivre’s theorem if you do not like complex exponentials.