• Tlaloc_Temporal@lemmy.ca
    link
    fedilink
    English
    arrow-up
    1
    ·
    3 months ago

    The rules of decimal notation don’t sipport infinite decimals properly. In order for a 9 to roll over into a 10, the next smallest decimal needs to roll over first, therefore an infinite string of anything will never resolve the needed discrete increment.

    Thus, all arguments that 0.999… = 1 must use algebra, limits, or some other logic beyond decimal notation. I consider this a bug with decimals, and 0.999… = 1 to be a workaround.

    • Leate_Wonceslace@lemmy.dbzer0.com
      link
      fedilink
      English
      arrow-up
      0
      ·
      3 months ago

      don’t sipport infinite decimals properly

      Please explain this in a way that makes sense to me (I’m an algebraist). I don’t know what it would mean for infinite decimals to be supported “properly” or “improperly”. Furthermore, I’m not aware of any arguments worth taking seriously that don’t use logic, so I’m wondering why that’s a criticism of the notation.

      • Tlaloc_Temporal@lemmy.ca
        link
        fedilink
        English
        arrow-up
        1
        ·
        3 months ago

        Decimal notation is a number system where fractions are accomodated with more numbers represeting smaller more precise parts. It is an extension of the place value system where very large tallies can be expressed in a much simpler form.

        One of the core rules of this system is how to handle values larger than the highest digit, and lower than the smallest. If any place goes above 9, set that place to 0 and increment the next place by 1. If any places goes below 0, increment the place by (10) and decrement the next place by one (this operation uses a non-existent digit, which is also a common sticking point).

        This is the decimal system as it is taught originally. One of the consequences of it’s rules is that each digit-wise operation must be performed in order, with a beginning and an end. Thus even getting a repeating decimal is going beyond the system. This is usually taught as special handling, and sometimes as baby’s first limit (each step down results in the same digit, thus it’s that digit all the way down).

        The issue happens when digit-wise calculation is applied to infinite decimals. For most operations, it’s fine, but incrementing up can only begin if a digit goes beyong 9, which never happens in the case of 0.999… . Understanding how to resolve this requires ditching the digit-wise method and relearing decimals and a series of terms, and then learning about infinite series. It’s a much more robust and applicable method, but a very different method to what decimals are taught as.

        Thus I say that the original bitwise method of decimals has a bug in the case of incrementing infinite sequences. There’s really only one number where this is an issue, but telling people they’re wrong for using the tools as they’ve been taught isn’t helpful. Much better to say that the tool they’re using is limited in this way, then showing the more advanced method.

        That’s how we teach Newtonian Gravity and then expand to Relativity. You aren’t wrong for applying newtonian gravity to mercury, but the tool you’re using is limited. All models are wrong, but some are useful.

        • Leate_Wonceslace@lemmy.dbzer0.com
          link
          fedilink
          English
          arrow-up
          0
          ·
          3 months ago

          I can’t help but notice you didn’t answer the question.

          each digit-wise operation must be performed in order

          I’m sure I don’t know what you mean by digit-wise operation, because my conceptuazation of it renders this statement obviously false. For example, we could apply digit-wise modular addition base 10 to any pair of real numbers and the order we choose to perform this operation in won’t matter. I’m pretty sure you’re also not including standard multiplication and addition in your definition of “digit-wise” because we can construct algorithms that address many different orders of digits, meaning this statement would also then be false. In fact, as I lay here having just woken up, I’m having a difficult time figuring out an operation where the order that you address the digits in actually matters.

          Later, you bring up “incrementing” which has no natural definition in a densely populated set. It seems to me that you came up with a function that relies on the notation we’re using (the decimal-increment function, let’s call it) rather than the emergent properties of the objects we’re working with, noticed that the function doesn’t cover the desired domain, and have decided that means the notation is somehow improper. Or maybe you’re saying that the reason it’s improper is because the advanced techniques for interacting with the system are dissimilar from the understanding imparted by the simple techniques.

          • Tlaloc_Temporal@lemmy.ca
            link
            fedilink
            English
            arrow-up
            1
            ·
            3 months ago

            In base 10, if we add 1 and 1, we get the next digit, 2.

            In base 2, if we add 1 and 1 there is no 2, thus we increment the next place by 1 getting 10.

            We can expand this to numbers with more digits: 111(7) + 1 = 112 = 120 = 200 = 1000

            In base 10, with A representing 10 in a single digit: 199 + 1 = 19A = 1A0 = 200

            We could do this with larger carryover too: 999 + 111 = AAA = AB0 = B10 = 1110 Different orders are possible here: AAA = 10AA = 10B0 = 1110

            The “carry the 1” process only starts when a digit exceeds the existing digits. Thus 192 is not 2Z2, nor is 100 = A0. The whole point of carryover is to keep each digit within the 0-9 range. Furthermore, by only processing individual digits, we can’t start carryover in the middle of a chain. 999 doesn’t carry over to 100-1, and while 0.999 does equal 1 - 0.001, (1-0.001) isn’t a decimal digit. Thus we can’t know if any string of 9s will carry over until we find a digit that is already trying to be greater than 9.

            This logic is how basic binary adders work, and some variation of this bitwise logic runs in evey mechanical computer ever made. It works great with integers. It’s when we try to have infinite digits that this method falls apart, and then only in the case of infinite 9s. This is because a carry must start at the smallest digit, and a number with infinite decimals has no smallest digit.

            Without changing this logic radically, you can’t fix this flaw. Computers use workarounds to speed up arithmetic functions, like carry-lookahead and carry-save, but they still require the smallest digit to be computed before the result of the operation can be known.

            • Leate_Wonceslace@lemmy.dbzer0.com
              link
              fedilink
              English
              arrow-up
              0
              ·
              3 months ago

              If I remember, I’ll give a formal proof when I have time so long as no one else has done so before me. Simply put, we’re not dealing with floats and there’s algorithms to add infinite decimals together from the ones place down using back-propagation. Disproving my statement is as simple as providing a pair of real numbers where doing this is impossible.

              • Tlaloc_Temporal@lemmy.ca
                link
                fedilink
                English
                arrow-up
                1
                ·
                3 months ago

                Are those algorithms taught to people in school?

                Once again, I have no issue with the math. I just think the commonly taught system of decimal arithmetic is flawed at representing that math. This flaw is why people get hung up on 0.999… = 1.

    • pyre@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      edit-2
      3 months ago

      i don’t think any number system can be safe from infinite digits. there’s bound to be some number for each one that has to be represented with them. it’s not intuitive, but that’s because infinity isn’t intuitive. that doesn’t mean there’s a problem there though. also the arguments are so simple i don’t understand why anyone would insist that there has to be a difference.

      for me the simplest is:

      1/3 = 0.333…

      so

      3×0.333… = 3×1/3

      0.999… = 3/3

      • Tlaloc_Temporal@lemmy.ca
        link
        fedilink
        English
        arrow-up
        0
        ·
        edit-2
        3 months ago

        Any my argument is that 3 ≠ 0.333…

        EDIT: 1/3 ≠ 0.333…

        We’re taught about the decimal system by manipulating whole number representations of fractions, but when that method fails, we get told that we are wrong.

        In chemistry, we’re taught about atoms by manipulating little rings of electrons, and when that system fails to explain bond angles and excitation, we’re told the model is wrong, but still useful.

        This is my issue with the debate. Someone uses decimals as they were taught and everyone piles on saying they’re wrong instead of explaining the limitations of systems and why we still use them.

        For the record, my favorite demonstration is useing different bases.

        In base 10: 1/3 0.333… 0.333… × 3 = 0.999…

        In base 12: 1/3 = 0.4 0.4 × 3 = 1

        The issue only appears if you resort to infinite decimals. If you instead change your base, everything works fine. Of course the only base where every whole fraction fits nicely is unary, and there’s some very good reasons we don’t use tally marks much anymore, and it has nothing to do with math.

        • Leate_Wonceslace@lemmy.dbzer0.com
          link
          fedilink
          English
          arrow-up
          1
          ·
          3 months ago

          Any my argument is that 3 ≠ 0.333…

          After reading this, I have decided that I am no longer going to provide a formal proof for my other point, because odds are that you wouldn’t understand it and I’m now reasonably confident that anyone who would already understands the fact the proof would’ve supported.

          • Tlaloc_Temporal@lemmy.ca
            link
            fedilink
            English
            arrow-up
            0
            ·
            3 months ago

            Ah, typo. 1/3 ≠ 0.333…

            It is my opinion that repeating decimals cannot properly represent the values we use them for, and I would rather avoid them entirely (kinda like the meme).

            Besides, I have never disagreed with the math, just that we go about correcting people poorly. I have used some basic mathematical arguments to try and intimate how basic arithmetic is a limited system, but this has always been about solving the systemic problem of people getting caught by 0.999… = 1. Math proofs won’t add to this conversation, and I think are part of the issue.

            Is it possible to have a coversation about math without either fully agreeing or calling the other stupid? Must every argument about even the topic be backed up with proof (a sociological one in this case)? Or did you just want to feel superior?

            • Leate_Wonceslace@lemmy.dbzer0.com
              link
              fedilink
              English
              arrow-up
              1
              ·
              3 months ago

              It is my opinion that repeating decimals cannot

              Your opinion is incorrect as a question of definition.

              I have never disagreed with the math

              You had in the previous paragraph.

              Is it possible to have a coversation about math without either fully agreeing or calling the other stupid?

              Yes, however the problem is that you are speaking on matters that you are clearly ignorant. This isn’t a question of different axioms where we can show clearly how two models are incompatible but resolve that both are correct in their own contexts; this is a case where you are entirely, irredeemably wrong, and are simply refusing to correct yourself. I am an algebraist understanding how two systems differ and compare is my specialty. We know that infinite decimals are capable of representing real numbers because we do so all the time. There. You’re wrong and I’ve shown it via proof by demonstration. QED.

              They are just symbols we use to represent abstract concepts; the same way I can inscribe a “1” to represent 3-2={ {} } I can inscribe “.9~” to do the same. The fact that our convention is occasionally confusing is irrelevant to the question; we could have a system whereby each number gets its own unique glyph when it’s used and it’d still be a valid way to communicate the ideas. The level of weirdness you can do and still have a valid notational convention goes so far beyond the meager oddities you’ve been hung up on here. Don’t believe me? Look up lambda calculus.