Swift does have data race safety as of Swift 6 with their actor-based concurrency model and are introducing noncopyable types/a more sophisticated ownership model over the next few releases
Hmm, that sounds quite interesting. But because I’ve had to rebut that for everyone else that responded: Is it opt-in?
I guess, I would be fine with opt-in for the actor pattern, since you either do actors in your whole codebase or you don’t, but otherwise, opt-in often defeats the point of safety measures…
It’s opt-in in Swift 5 mode and opt-out in Swift 6 mode, the Swift 6 compiler supports both modes though and lets you migrate a codebase on a module-by-module basis.
Agree that opt-in sort of defeats the point, but in practice it’s a sort of unavoidable compromise (and similar to unsafe Rust there will always be escape hatches)
Swift fits the description too
Most people would consider it so, but it actually does not either fulfill the argument I posed there: https://forums.swift.org/t/what-language-is-more-memory-safe-swift-or-rust/31987
Swift does have data race safety as of Swift 6 with their actor-based concurrency model and are introducing noncopyable types/a more sophisticated ownership model over the next few releases
Hmm, that sounds quite interesting. But because I’ve had to rebut that for everyone else that responded: Is it opt-in?
I guess, I would be fine with opt-in for the actor pattern, since you either do actors in your whole codebase or you don’t, but otherwise, opt-in often defeats the point of safety measures…
It’s opt-in in Swift 5 mode and opt-out in Swift 6 mode, the Swift 6 compiler supports both modes though and lets you migrate a codebase on a module-by-module basis.
Agree that opt-in sort of defeats the point, but in practice it’s a sort of unavoidable compromise (and similar to unsafe Rust there will always be escape hatches)