• Hypx@kbin.social
    link
    fedilink
    arrow-up
    2
    ·
    edit-2
    8 months ago

    A lot of those “agnostic” sources are secretly working for the BEV companies. There’s a lot of misinformation out there. Anyways, given that a fuel cell is vastly more efficient than a conventional ICE, there shouldn’t be an issue on efficiency. FCEVs are more than good enough. Anyone bringing this issue up as a problem is either confused or has an agenda. After all, FCEVs are also EVs.

    Gas stations are much cheaper than battery swapping. In fact, that is the main argument in favor of FCEVs. Replacing existing gas stations with hydrogen stations is a much cheaper solution than putting up millions of charging stations, battery swapping stations, DC fast charging stations, etc.

    I’m on Kbin FYI. It mostly works for my needs.

    Excess green energy will likely flood the system. We will have an overabundance of all types of green energy, including hydrogen, in the long-run.

    Critics of hydrogen are basically contradicting themselves. If you admit the need for energy storage in the form of hydrogen, you are also admitting the existence of very cheap hydrogen. That will be available for a variety of tasks. It will become the go-to solution for anything that needs a chemical fuel. If it is cheap enough for heating or steel production, it will be cheap enough for transportation solutions too.

    Yes, you should read up on salt cavern storage: https://www.pv-magazine.com/2020/06/16/hydrogen-storage-in-salt-caverns/

    • TWeaK@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      ·
      8 months ago

      A lot of those “agnostic” sources are secretly working for the BEV companies.

      The kind of agnostic sources I was referring to are like the one I provided - system operators, who don’t really care what provides the generation or what uses it, but instead try to optimise the network.

      Yes, there is misinformation out there. Just like your claim that FCEV’s are more efficient - they’re more efficient at the end stage of converting a fuel into motion, but the overall process including hydrogen production and getting the fuel cell ready to use is far, far less efficient. It’s more efficient to pull oil out the ground, process it and then run a car on it than it is to run an FCEV. Spinning up renewable generation to charge a battery requires more energy than using current oil infrastructure, but is definitely more efficient than FCEV, even when accounting for the production and lifecycle of a current battery. Oil only wins on efficiency right now because the infrastructure is already there, and because the fuel was made over millions of years prior.

      Yes, it would be cheaper to adapt current gas stations to hydrogen. My point was referring to the time before gas stations were built - back then, it would have been cheaper to stick with horses than to move to widespread adoption of the new technology. Models for adapting current gas stations to hydrogen also typically ignore the cost of green hydrogen, and instead assume it will continue to be as cheap as it is now while it is produced by fossil fuel processes.

      Hydrogen is cheap right now because it is a byproduct of dirty fuel production. If we stop using dirty fuel, we will stop having cheap hydrogen, and then all the people who invested in hydrogen because it was cheap will be left holding the bag. This is why I referred to it as “snake oil” in my initial comment.

      I realised you were on kbin, hence my edits :o) I did also contradict myself, but clarified my objection to hydrogen consumption. The edits probably didn’t make it through to kbin that quickly, but they seem to be there now.

      Excess green energy will likely flood the system. We will have an overabundance of all types of green energy, including hydrogen, in the long-run.

      That’s wild speculation, there. We need to focus on the big problem right now, not the long-run. Right now, we need to get off fossil fuels as quickly as possible - trying to ease the transition with similar technologies (particularly ones focused on a byproduct of and reliant on current technology) will only slow things down by furthering demand for the existing infrastructure.

      Thank you for the link, however pv-mag is a source I am very skeptical of. They’re very focused on the growth of their industry, and generally give a marketeer’s approach to things rather than an objective technical view. Hell, the first source link in that article is supposed to be about the Jülich Institute for Energy and Climate Research, but instead links to another one of their own articles that has little if anything to due with the institute or the topic of your article. pv-mag spew a lot of hyperbole, in my experience.

      The source paper isn’t so bad, though, and has been widely cited. I remain skeptical about the commercial viability of it (in particular, they seem to give no consideration to the risk of explosion when filling a cavern with hydrogen), but it still sounds like a cool technology.