• Natanael@slrpnk.net
    link
    fedilink
    arrow-up
    2
    ·
    1 year ago

    Found via Wikipedia. From the 70’s:

    We should perhaps finish our paper with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, …, and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons, we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people doing experiments vulnerable to the Higgs boson should know how it may turn up.

    — John R. Ellis, Mary K. Gaillard, and Dimitri V. Nanopoulos,

    One of the problems was that at the time there was almost no clue to the mass of the Higgs boson. Theoretical considerations left open a very wide range somewhere between 10 GeV/c2[13] and 1000 GeV/c2[14] with no real indication where to look.[1]

    So you’re literally as wrong as you could be. It wasn’t until what once was a wild hypothesis had been explored more that they could start to make better predictions around where it might be, decades later, and after tests narrowing down where it wasn’t.

    I didn’t “walk back” either. Exploring multiple possibilities is called hedging, not walking back (since that means you retracted something which I didn’t do), and scientists does it too. I didn’t say either one option is more likely, I told you there are many possibilities and then you insisted on calling several of them impossible not because any mechanics exclude it’s possibility but because you can’t see it. That’s plainly wrong. You can definitely argue it’s improbable, but you don’t get to call it impossible without proving it impossible.

    • Zoolander@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      1 year ago

      LOL. Are you seriously trying to claim that you disproved my point by providing a citation that literally proves what I said? You just provided a range of masses within which they knew the Highs Boson particle would be. They predicted that range and they were right. How is that an example of “no idea”?

      Direct quote from CERN, where they both predicted and discovered the boson (emphasis mine):

      Since every particle can be represented as a wave in a quantum field, introducing a new field into the theory means that a particle associated with this field should also exist.

      Most properties of this particle are predicted by the theory, so if a particle matching the description would be found, it provides strong evidence for the BEH mechanism – otherwise we have no means of probing for the existence of the Higgs field.

      The properties they were looking for were predicted by Higgs’ initial theory. The only unknown property was the specific mass but, as I’ve mentioned and you confirmed, they knew a range. Every other property of it was already known. If he was wrong, they wouldn’t have found anything. They knew what tests they needed to do because they knew what properties they were looking for. In this case, a boson with a large mass, within a large range, that quickly decays. The only reason it took so long to observe using these tests was because the lifetime of the particle is so short which means it cannot be found in nature.

      You did walk it back. You’ve walked back your original statement and are misrepresenting what I said. I never said that it’s impossible because you can’t see it. I said that your suggestion that they’re changing parameters mid-simulation is impossible because we’d be able to observe those changes. That doesn’t mean we can’t see them. It means we can’t measure them or detect them using any of our senses. Then you moved the goalposts to them removing or ending any simulations where we did observe these things which makes that a meaningless scenario that is unfalsifiable.

      I’ve only been making one point. You’re the one that keeps moving the goalposts and changing the argument.

      • Natanael@slrpnk.net
        link
        fedilink
        arrow-up
        1
        ·
        edit-2
        1 year ago

        Physicists tends to work with precision in decimals, not multiple orders of magnitude. They didn’t know it would be there either, all they knew is the theory they had would be simpler if it was there than not.

        Your quote from the website is a bad attempt at backdating current knowledge from very recent research and experiments to the original discoverers

        https://www.scientificamerican.com/article/how-the-higgs-boson-ruined-peter-higgss-life/

        The discovery of the Higgs boson came nearly 50 years after Higgs’s prediction, and he said he never expected it to be found in his lifetime.

        It’s not even known if there’s more than one Higgs boson, because the theory allows multiple variants.

        Look at that graph of how many different variants would decay differently;

        https://home.cern/news/series/lhc-physics-ten/higgs-boson-revealing-natures-secrets

        They had thousands of different predictions and couldn’t know which were right until the data was in.

        If, due to its mass, they could only observe the interplay between the Higgs boson on one hand and the W and Z bosons on the other, the puzzle of the fermion masses would remain unsolved. Discovering the particle at a convenient mass was an unexpected kindness from nature. If it were slightly more massive, above 180 GeV or so, the options to study it at the time of its discovery would have been more limited.

        The variety of available transformation products means that data from the individual channels can be combined together through sophisticated techniques to build up a greater understanding of the particle. “Doing so is not trivial,” says Giovanni Petrucciani, co-convener of the Higgs analysis group in CMS. “You have to treat the uncertainties similarly across all the individual analyses and interpret the results carefully, once you have applied complicated statistical machinery.” Combining data from the transformation of the Higgs boson to pairs of Z bosons and pairs of photons allowed ATLAS and CMS to discover the Higgs boson in 2012.

        It was legitimately not known if we could find it. It could have been big enough that LHC would’ve failed, and then it could have taken us 50 more years to build a collider large enough (mostly due to cost, but still)

        In fact they’re only mostly sure still

        Yet, the Brout-Englert-Higgs mechanism remains among the least-understood phenomena in the Standard Model. Indeed, while scientists have dropped the “-like” suffix and have understood the Higgs boson remarkably since its discovery, they still do not know if what was observed is the Higgs boson predicted by the Standard Model.

        You don’t even understand what I’m saying, how can you accuse me of walking back?

        You keep making unjustified claims even now. What if a simulator knows what you’re looking at and simply don’t mess with that? Clearly not impossible. Implausible? Absolutely, AND I KEEP SAYING SO, there’s no reason to believe it’s happening, and yet it’s possible. Your inability to comprehend doesn’t change the meaning of my statements.

        Your persistence in calling it meaningless because it’s unfalsifiable with no further context is equivalent to you calling most theoretical physics meaningless. A ton of theories like string theory is by your standard equally unfalsifiable and therefore we shall declare it impossible and stop investigating.

        Instead we develop endless hypothetical scenarios specifically so we can look for evidence when new tools for investigating fundamental physics become available.

        • Zoolander@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          1 year ago

          How could it be backdating current knowledge when those properties are literally in his paper where he posited the theory to begin with! You’re either being disingenuous or intentionally misleading. The reason he didn’t expect to find it in his lifetime was because the chances of observing the particle were infinitesimally small because of its short lifetime and the fact that it decays into other common bosons. It is not found in nature and can only be produced in a lab.

          I really don’t know how much clearer you can be about their ability to predict what they were looking for other than repeating the quote and linking the paper:

          Most properties of this particle are predicted by the theory

          Are you saying CERN is lying on their Highs Boson page?

          https://home.cern/science/physics/higgs-boson/what

          https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.13.508

          And you’re also wrong about the idea of “variants” that you’re claiming. The variants they’re referring to are the byproducts of the decay. Since the Higgs Boson decays into the same products as normal Z and W bosons and photons.

          Every type of particle is characterized by a set of properties: mass, electrical charge, lifetime etc. For the Higgs boson, mass was the only unknown. For a known mass, all the other properties can be calculated from theory. Measuring them experimentally and comparing them with the result of these calculations allows scientists to verify that they have really found the Higgs boson.

          You’re mischaracterizing what they’re saying and arguing that what they are saying, and what I’ve quoted directly from their website where it says that all the properties except the mass were known, is not true. You’re also confusing us having the capabilities, using technology available at the time, with the ideas underpinning how it would be observed and what would have been observed based on the theory associated with it. They knew what they were looking for but being able to observe a particle that decays immediately isn’t easy. Your chart and quote are talking about the variations of interactions with other bosons and photons. How am I supposed to take any of your replies seriously?

          I’m not making unjustified claims. You keep moving the goalposts away from the initial statement and are now arguing probability instead of the actual argument. The fact is that it is impossible for us to be in a simulation where the creators can change conditions if they end any simulations where we’d notice them. It’s not improbable. It’s impossible. You can keep making more straw men all you want. It doesn’t change the initial argument.