The Brits have undoubtedly the best outlets from a safety perspective, despite their size. North American outlets are garbage by basically all measures. European plugs are weirdly round, but very functional.
I’ll just throw in one good thing for US outlets. The option of GFCI (Ground Fault Circuit Interrupter) outlets. I think it is required in bathrooms (or elsewhere 6 feet from water source), but you can probably install those anywhere you wish. It cuts off the power during a ground fault, which means that some current (more than regular leakage) is flowing to ground, perhaps through a human. It should cut off at just 5mA.
There’s something similar in Europe, called RCD (Residual Current Device). It is the same thing, it’s just that in US it’s generally called GFCI and RCD in Europe. The difference with RCD is that it’s not in the outlets, but the breaker box, and generally protects the whole home. But you can also wire GFCI to multiple outlets. The problem is, that trip ground fault current for RCD can be up to 30mA as opposed to GFCI’s 5mA. And with 10mA and above, you may not be able to “let go” of the item shocking you, which isn’t nice even if it won’t yet kill you (probably).
Why is that? Leakage current. That could very well exceed 5mA when you have stuff like a desktop PC, fridge and other stuff connected, resulting in unwanted tripping while everything functions just fine. It also means that perhaps, one day, your fridge may save you by preloading the RCD as it wouldn’t trip without it.
OK, now something negative about (some) EU plugs.
Type C:
This should only work for devices that don’t require ground due to pin thickness. But you can still get it to make a terrible contact and hold it in. But perhaps you could even force it into some. I dislike this.
Type F:
Oh well. You can probably still force in older plugs that require ground pin yet don’t have the contacts for type F sockets like modern plugs. It is also reversible which I hate. Sockets should be polarized. You shouldn’t be allowed to just plug in the device other way around. If there is a switch, it definitely should disconnect live wire, not neutral leaving the device live but not functional. That’s unsafe. I hate this.
Type E:
This is nice. I like it. It would also be cool if there was a fuse inside the plugs cough cough UK plugs.
At least in my country, GFCI’s are required to be fitted in the fuse box, to protect the entire building. Not just rooms which are prone to ground faults. In the American type, the protection is optional.
If you have a monopolar switch in your appliance, you dun fucked up real bad.
Reason is here in Belgium (and a bit of France apparently) and especially around Brussels, it’s very common for houses to be wired with two phases (+115/-115V). This was done post-war for copper-saving reasons, and we call this 3x230V. So any device that cuts the brown wire only will still have 115VAC to ground, which is obviously unsafe.
Also more generally there is no guarantee that the live wire is on either side. From what I understand each electrician has their preference, and as long as the wiring is consistent then it’s up to code.
So wherever there is an outlet, nothing can be safely assumed by the appliance besides that the total voltage is around 230V AC. Even assuming that there is a ground is incorrect due to old houses still having Type C (which incidentally means that even Type E also is not polarized when plugged into a Type C receptacle!).
There are appliances with only live wire switch? If that is the case it’s horrible design, should always cut live and neutral for European reversible plugs
It’s convenient when plugging in shukos or europlugs, but when plugging in Italian plugs they wiggle so much, as the pin holes are much wider then required, and the pins aren’t angled like on europlugs
You can get RCD sockets if you want in the UK (and mainland Europe too). But we generally at the minimum have sockets protected by an RCD (which is the same thing) and in more modern installations all circuits are protected by one.
In my country the differential switch is mandatory, every circuit must be protected, be it from a main one or separate ones for each circuit. I’d be surprised if it weren’t the same all over the EU.
For new installations in the UK that’s true. But my house, for example was wired in the 1990s and has an RCD only on the sockets (the reasoning I think was that an old style incandescent bulb failing might trip the single RCD taking out the whole house power, but could be wrong).
Since the early 2000’s they changed it for new installs to be RCD for all circuits I believe.
I think 30ma is about normal. There’s a good reason, in an average socket ring (or even radial) you will always get SOME leakage. So there’s always going to be a common sense allowance made depending on whether it’s a single socket, a small radial or one or more rings.
Regarding RCD, where I live they’re allowed to be 30mA for wires that do not include outlets, but if an outlet is connected to the switch, the switch must cut off at 3mA…
Regarding the outlets, the type C is old, I haven’t seen those installed or sold since at least the early nineties (probably even earlier). I don’t understand why it being reversible is bad. I think switches can just cut of both wires, and you’re left with the ability to plug it in any way you like. I don’t really know whether the switches actually do that or not (or, if they’re required to do that). Can this be tested somehow?
I’m biased, from the UK. But it’s pretty much the order I’d do it too. UK first, the round Europe ones only very slightly behind (maybe even on par, I have just a slight issue with the fact that polarity isn’t assured).
It will work either way, there is no polarity when a circuit is made.
There is polarity before a circuit is made. One wire is live, one wire is a neutral return.
For a basic heater, plugged in one way will have the heating element always live, and the other way it will only be live when it is switched on and a circuit is made.
One wire is live in that it moves between —x and +x volts in a sine wave. The neutral is often connected to earth/ground somewhere upstream and should be 0v. So if you just pop that power into a transformer and then regulate and only use the DC then it’s completely irrelevant which way you plug it in.
However there’s plenty of cheaper ways to get a lower voltage, or to power a device from mains power that when done badly can reference what is thought to be neutral (and this ground) but could easily become live and make something metallic become live either without fault, or with fault to a minor component.
My biggest beef with the NA outlets is that they wear out fast, causing plugs to not hold securely. Plugs with round prongs secure a lot better in their socket. Outlets with a shaped/ recessed (non-flat) faceplate also do a much better job at keeping the plug in.
The Brits have undoubtedly the best outlets from a safety perspective, despite their size. North American outlets are garbage by basically all measures. European plugs are weirdly round, but very functional.
My two (€/100)s
I’ll just throw in one good thing for US outlets. The option of GFCI (Ground Fault Circuit Interrupter) outlets. I think it is required in bathrooms (or elsewhere 6 feet from water source), but you can probably install those anywhere you wish. It cuts off the power during a ground fault, which means that some current (more than regular leakage) is flowing to ground, perhaps through a human. It should cut off at just 5mA.
There’s something similar in Europe, called RCD (Residual Current Device). It is the same thing, it’s just that in US it’s generally called GFCI and RCD in Europe. The difference with RCD is that it’s not in the outlets, but the breaker box, and generally protects the whole home. But you can also wire GFCI to multiple outlets. The problem is, that trip ground fault current for RCD can be up to 30mA as opposed to GFCI’s 5mA. And with 10mA and above, you may not be able to “let go” of the item shocking you, which isn’t nice even if it won’t yet kill you (probably).
Why is that? Leakage current. That could very well exceed 5mA when you have stuff like a desktop PC, fridge and other stuff connected, resulting in unwanted tripping while everything functions just fine. It also means that perhaps, one day, your fridge may save you by preloading the RCD as it wouldn’t trip without it.
OK, now something negative about (some) EU plugs.
Type C:
This should only work for devices that don’t require ground due to pin thickness. But you can still get it to make a terrible contact and hold it in. But perhaps you could even force it into some. I dislike this.
Type F:
Oh well. You can probably still force in older plugs that require ground pin yet don’t have the contacts for type F sockets like modern plugs. It is also reversible which I hate. Sockets should be polarized. You shouldn’t be allowed to just plug in the device other way around. If there is a switch, it definitely should disconnect live wire, not neutral leaving the device live but not functional. That’s unsafe. I hate this.
Type E:
This is nice. I like it. It would also be cool if there was a fuse inside the plugs cough cough UK plugs.
Re: GFCI’s
At least in my country, GFCI’s are required to be fitted in the fuse box, to protect the entire building. Not just rooms which are prone to ground faults. In the American type, the protection is optional.
Regarding Type F:
If you have a monopolar switch in your appliance, you dun fucked up real bad.
Reason is here in Belgium (and a bit of France apparently) and especially around Brussels, it’s very common for houses to be wired with two phases (+115/-115V). This was done post-war for copper-saving reasons, and we call this 3x230V. So any device that cuts the brown wire only will still have 115VAC to ground, which is obviously unsafe.
Also more generally there is no guarantee that the live wire is on either side. From what I understand each electrician has their preference, and as long as the wiring is consistent then it’s up to code.
So wherever there is an outlet, nothing can be safely assumed by the appliance besides that the total voltage is around 230V AC. Even assuming that there is a ground is incorrect due to old houses still having Type C (which incidentally means that even Type E also is not polarized when plugged into a Type C receptacle!).
There are appliances with only live wire switch? If that is the case it’s horrible design, should always cut live and neutral for European reversible plugs
In Italy we have our own version of the type F, the Schuko Bipasso and it’s so fucking convenient. (number 2)
It’s convenient when plugging in shukos or europlugs, but when plugging in Italian plugs they wiggle so much, as the pin holes are much wider then required, and the pins aren’t angled like on europlugs
You can get RCD sockets if you want in the UK (and mainland Europe too). But we generally at the minimum have sockets protected by an RCD (which is the same thing) and in more modern installations all circuits are protected by one.
In my country the differential switch is mandatory, every circuit must be protected, be it from a main one or separate ones for each circuit. I’d be surprised if it weren’t the same all over the EU.
For new installations in the UK that’s true. But my house, for example was wired in the 1990s and has an RCD only on the sockets (the reasoning I think was that an old style incandescent bulb failing might trip the single RCD taking out the whole house power, but could be wrong).
Since the early 2000’s they changed it for new installs to be RCD for all circuits I believe.
Sure, but as far as I could find, even those have trip rating of 30mA. But perhaps I could find some with lower rating.
I think 30ma is about normal. There’s a good reason, in an average socket ring (or even radial) you will always get SOME leakage. So there’s always going to be a common sense allowance made depending on whether it’s a single socket, a small radial or one or more rings.
Yes, and 30mA, even at mains voltage, will not kill someone. Static shocks can vary from 1,000V to 500,000V and are usually around 5mA for reference.
Regarding RCD, where I live they’re allowed to be 30mA for wires that do not include outlets, but if an outlet is connected to the switch, the switch must cut off at 3mA…
Regarding the outlets, the type C is old, I haven’t seen those installed or sold since at least the early nineties (probably even earlier). I don’t understand why it being reversible is bad. I think switches can just cut of both wires, and you’re left with the ability to plug it in any way you like. I don’t really know whether the switches actually do that or not (or, if they’re required to do that). Can this be tested somehow?
I’m biased, from the UK. But it’s pretty much the order I’d do it too. UK first, the round Europe ones only very slightly behind (maybe even on par, I have just a slight issue with the fact that polarity isn’t assured).
With single phase AC there is no polarity, when you plug something in you don’t need to know which plug is live, it will work either way.
It will work either way, there is no polarity when a circuit is made.
There is polarity before a circuit is made. One wire is live, one wire is a neutral return.
For a basic heater, plugged in one way will have the heating element always live, and the other way it will only be live when it is switched on and a circuit is made.
One is definitely safer than the other.
Almost all devices that switch mains power, have both the live and neutral connected to the switch.
Almost…
One wire is live in that it moves between —x and +x volts in a sine wave. The neutral is often connected to earth/ground somewhere upstream and should be 0v. So if you just pop that power into a transformer and then regulate and only use the DC then it’s completely irrelevant which way you plug it in.
However there’s plenty of cheaper ways to get a lower voltage, or to power a device from mains power that when done badly can reference what is thought to be neutral (and this ground) but could easily become live and make something metallic become live either without fault, or with fault to a minor component.
My biggest beef with the NA outlets is that they wear out fast, causing plugs to not hold securely. Plugs with round prongs secure a lot better in their socket. Outlets with a shaped/ recessed (non-flat) faceplate also do a much better job at keeping the plug in.